Gold nanoprism/Tollens’ reagent sophisticated as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in meals samples using smartphone readout
On this work, an assay with extreme sensitivity and selectivity for the detection of formaldehyde (FA) is obtainable. The assay utilized a gold nanoprism/Tollens’ reagent (Au-np/TR) sophisticated as a result of the sensor utilized in headspace single-drop microextraction (HS-SDME).
A ground plasmon resonance signal enhancement along with shade change was attributable to the formation of Au@Ag-np after a redox response between FA and TR in the midst of the HS-SDME course of. With the utilization of smartphone nanocolorimetry (SNC), the FA is perhaps detected and quantified. For HS-SDME-SNC, a linearity calibration curve ranging from 0.1 to 100 μM was obtained, and the limit of detection was determined to be 30 nM. Worthwhile makes an try to seek out out FA had been demonstrated by analysis of the analyte in (adulterated) raw meals samples (octopus and hen flesh). Matrix outcomes from precise samples had been prevented by using HS-SDME, and solely a 3-μL droplet of solvent was wished inside the assay.
Description: LIF is a multifunctional secreted glycoprotein that exists in both soluble and matrix-bound forms. It displays biologic activities ranging from the differentiation of myeloid leukemic cells into macrophage lineage to effects on bone metabolism, inflammation, neural development, embryogenesis, and the maintenance of implantation. It is now clear that LIF is related in both structure and mechanism of action to the interleukin IL-6 family of cytokines, which also includes IL-11, ciliary neurotrophic factor, oncostatin M, and cardiotrophin 1. The actions of these cytokines are mediated through specific cell-surface receptors that consist of a unique chain and the shared signal transducing subunit gp130.
Description: LIF is a multifunctional secreted glycoprotein that exists in both soluble and matrix-bound forms. It displays biologic activities ranging from the differentiation of myeloid leukemic cells into macrophage lineage to effects on bone metabolism, inflammation, neural development, embryogenesis, and the maintenance of implantation. It is now clear that LIF is related in both structure and mechanism of action to the interleukin IL-6 family of cytokines, which also includes IL-11, ciliary neurotrophic factor, oncostatin M, and cardiotrophin 1. The actions of these cytokines are mediated through specific cell-surface receptors that consist of a unique chain and the shared signal transducing subunit gp130.
Description: LIF is a multifunctional secreted glycoprotein that exists in both soluble and matrix-bound forms. It displays biologic activities ranging from the differentiation of myeloid leukemic cells into macrophage lineage to effects on bone metabolism, inflammation, neural development, embryogenesis, and the maintenance of implantation (2). It is now clear that LIF is related in both structure and mechanism of action to the interleukin IL-6 family of cytokines, which also includes IL-11, ciliary neurotrophic factor, oncostatin M, and cardiotrophin 1 (2). The actions of these cytokines are mediated through specific cell-surface receptors that consist of a unique chain and the shared signal transducing subunit gp130.
Description: LIF is a multifunctional secreted glycoprotein that exists in both soluble and matrix-bound forms. It displays biologic activities ranging from the differentiation of myeloid leukemic cells into macrophage lineage to effects on bone metabolism, inflammation, neural development, embryogenesis, and the maintenance of implantation (2). It is now clear that LIF is related in both structure and mechanism of action to the interleukin IL-6 family of cytokines, which also includes IL-11, ciliary neurotrophic factor, oncostatin M, and cardiotrophin 1 (2). The actions of these cytokines are mediated through specific cell-surface receptors that consist of a unique chain and the shared signal transducing subunit gp130.
Description: Based on its helical structure, LIF (Leukemia Inhibitory Factor) is considered a member of the Interleukin-6 family of cytokines. Functionally, it has been implicated in a many physiological processes including development, hematopoiesis, bone metabolism, and inflammation. Some cell types known to express LIF include activated T cells, monocytes, astrocytes, osteoblasts, keratinocytes, regenerating skeletal muscle, mast cells, and fibroblasts.
Description: Leukemia Inhibitory Factor also called LIF is a lymphoid factor that promotes long-term maintenance of embryonic stem cells by suppressing spontaneous differentiation. Leukemia Inhibitory Factor has several functions such as cholinergic neuron differentiation, control of stem cell pluripotency, bone & fat metabolism, mitogenesis of factor dependent cell lines & promotion of megakaryocyte production in vivo. Human and mouse LIF exhibit a 78% identity in its amino acid sequence. Human LIF is as active on human cells as is it is on mouse cells, though mouse LIF is about 1000 fold less active on human cells, than human LIF.
Description: Leukemia Inhibitory Factor also called LIF is a lymphoid factor that promotes long-term maintenance of embryonic stem cells by suppressing spontaneous differentiation. Leukemia Inhibitory Factor has several functions such as cholinergic neuron differentiation, control of stem cell pluripotency, bone & fat metabolism, mitogenesis of factor dependent cell lines & promotion of megakaryocyte production in vivo. Human and mouse LIF exhibit a 78% identity in its amino acid sequence. Human LIF is as active on human cells as is it is on mouse cells, though mouse LIF is about 1000 fold less active on human cells, than human LIF. Recombinant mouse LIF produced in E. coli is a single, non-glycosylated, polypeptide chain containing 180 amino acids and having a molecular mass of 19.86 kDa.
Description: Leukemia Inhibitory Factor also called LIF is a lymphoid factor that promotes long-term maintenance of embryonic stem cells by suppressing spontaneous differentiation. Leukemia Inhibitory Factor has several functions such as cholinergic neuron differentiation, control of stem cell pluripotency, bone & fat metabolism, mitogenesis of factor dependent cell lines & promotion of megakaryocyte production in vivo. Human and mouse LIF exhibit a 78% identity in its amino acid sequence. Human LIF is as active on human cells as is it is on mouse cells, though mouse LIF is about 1000 fold less active on human cells, than human LIF. Recombinant mouse LIF produced in E. coli is a single, non-glycosylated, polypeptide chain containing 180 amino acids and having a molecular mass of 19.86 kDa.
Description: Leukemia inhibitory factor (LIF) is a member of Interleukin 6 family. This protein is mainly expressed in the trophectoderm of the developing embryo, with its receptor LIFR expressed throughout the inner cell mass. LIF has the capacity to induce terminal differentiation in leukemic cells. Its activities include the induction of hematopoietic differentiation in normal and myeloid leukemia cells, the induction of neuronal cell differentiation, and the stimulation of acute-phase protein synthesis in hepatocytes. LIF is used in mouse embryonic stem cell culture, because that removal of LIF pushes stem cells toward differentiation, but they retain their proliferative potential or pluripotency. It is also used in phase II clinical trial, which can assist embryo implantation in women who have failed to become pregnant despite assisted reproductive technologies (ART). Mature mouse LIF shares 78 % a.a. sequence identity with Human LIF.
Description: Description of target: Leukemia inhibitory factor, or LIF, is an interleukin 6 class cytokine that affects cell growth by inhibiting differentiation. When LIF levels drop, the cells differentiate. The LIF was mapped gene to 22q11-q12.2 by Southern analysis of a series of mouse/human somatic cell hybrids and by in situ hybridization to the chromosomes of 2 normal males and some individuals with chromosomal rearrangements. The gene maps between the Philadelphia translocation BCR1 and the breakpoint of the translocation in cell line GM2324 at 22q12.2. LIF derives its name from its ability to induce the terminal differentiation of myeloid leukemic cells, thus preventing their continued growth. Other properties attributed to the cytokine include: the growth promotion and cell differentiation of different types of target cells, influence on bone metabolism, cachexia, neural development, embryogenesis and inflammation.;Species reactivity: Mouse;Application: ELISA;Assay info: ;Sensitivity: <10pg/ml
Description: Description of target: LIF has the capacity to induce terminal differentiation in leukemic cells. Its activities include the induction of hematopoietic differentiation in normal and myeloid leukemia cells, the induction of neuronal cell differentiation, and the stimulation of acute-phase protein synthesis in hepatocytes.;Species reactivity: Mouse;Application: ;Assay info: Assay Methodology: Quantitative Sandwich ELISA;Sensitivity: 0.039 ng/mL
Description: Mouse LIF protein, C-His tag, expressed in E. coli
Genetically Encoded Quinone Methides Enabling Quick, Web page-specific, and Image-controlled Protein Modification with Amine Reagents
-carbon, affording the shortest linkage to protein backbone which is essential for superior analysis involving orientation and distance. We put in diversified functionalities onto proteins, and linked a spin label as shut as attainable to the protein backbone, reaching extreme choice in double electron-electron paramagnetic resonance distance measurements.
bSite-specific modification of proteins with purposeful molecules provides extremely efficient devices for researching and engineering proteins. Proper right here we report a model new chemical conjugation methodology which photocages extraordinarily reactive nonetheless chemically selective moieties, enabling the utilization of protein-inert amines for selective protein modification. New amino acids FnbY and FmnbY, bearing photocaged quinone methides (QMs), had been genetically built-in into proteins.
Upon light activation, they generated extraordinarily reactive QM, which shortly reacted with amine derivatives. This system encompasses a unusual combination of desired properties along with fast kinetics, small and regular linkage, compatibility with low temperature, photo-controllability, and broadly accessible reagents. Moreover, labeling by FnbY occurs on the
Impression of variation in reagent combos for one-stage clotting assay on assay discrepancy in nonsevere haemophilia A
Introduction: Problem VIII train (FVIII:C) is measured by one-stage clotting assay (OSA) or chromogenic substrate assay (CSA). Very important variations in FVIII:C between OSA (FVIII:C1st ) and CSA (FVIII:CChr ) are described as assay discrepancy in nonsevere haemophilia A (HA). Quite a few reagent combos (APTT reagent and FVIII-deficient plasma) are used for OSA, nonetheless the affect of variations in reagent combos on assay discrepancy has not been completely characterised.
Intention: To clarify the variations in FVIII:C1st /FVIII:CChr ratios in keeping with OSA reagent combination in HA subjects with/with out assay discrepancy.
Methods: Thirty-nine victims beforehand recognized with nonsevere HA had been enrolled, and their FVIII genes had been investigated and FVIII:C ranges had been assessed by a single CSA reagent and 11 OSA reagent combos. Receiver working attribute (ROC) curve analysis was used to predict attainable cut-off values of the FVIII:C1st /FVIII:CChr ratio to stipulate FVIII assay discrepancy for each reagent combination.
Outcomes: Victims had been categorized into nondiscrepant (n = 25), discrepant (n = 5) and unclassified (n = 9) groups in keeping with their genotypes and information inside the database. The FVIII:C1st /FVIII:CChr ratio in nondiscrepant HA varied broadly, counting on the APTT reagents and FVIII-deficient plasma used. The ratio in discrepant HA victims differed with respect to their genotype and the reagent combination used. ROC curve analyses revealed that cut-off values to distinguish the assay discrepancy differed counting on the reagents used, nonetheless revealed two novel genotype variants, p.Cys573Gly and p.Gly582Arg, associated to FVIII assay discrepancy
Exploring the conduct of the NFSI reagent as a nitrogen provide
The various natural actions of nitrogen-containing compounds make the event of the C-N bond of good significance. As N-fluorobenzenesulfonimide, one of many important plentiful chemical feedstock, has a twin behaviour, i.e. as an electrophilic fluorination and amidation provide, it attracts the attention of synthetic chemists for exploitation.
This consider comprehensively summarizes the quite a few progress of the surroundings pleasant and delicate amidation reactions, with an emphasis on approaches for the know-how of nitrogen-centered intermediates, related mechanisms and new synthetic chemistry methods that present alternate options to beat obstacles in pharmaceutical functions. On this angle, we deal with the developments inside the amidation response using NFSI so far decade. We deal with the present progress, challenges and future outcomes inside the area of amidation chemistry using commercially accessible NFSI.
Description: The IL-17 family is comprised of at least six proinflammatory cytokines that share a conserved cysteine-knot structure but diverge at the N-terminus. IL-17 family members are glycoproteins secreted as dimers that induce local cytokine production and recruit granulocytes to sites of inflammation. IL-17 is induced by IL-15 and IL-23, mainly in activated CD4+ T cells distinct from Th1 or Th2 cells. IL-17F is the most homologous to IL-17, but is induced only by IL-23 in activated monocytes. IL-17B binds the IL-17B receptor, but not the IL-17 receptor; it is most homologous with IL-17D, which is expressed by resting CD4+ T cells and CD19+ B cells. IL-17E is mainly produced by Th2 cells and recruits eosinophils to lung tissue. IL-17C has a very restricted expression pattern but has been detected in adult prostate and fetal kidney libraries.
Synthetic peptide within Human IL-17 aa 60-109 / 155.
Description: Cytokines are small, soluble proteins with pleiotropic effects on a variety of cell types. Cytokines have a regulatory function over the immune system and mediate aspects of inflammatory response. They exert their biological effects through the binding of membrane-bound receptors which, in turn, initiate signal transduction cascades and elicit physiological changes in their target cell. Interleukin-17 (IL-17) and its cognate receptor, IL-17R, are an example of such a cytokine receptor pair. Originally identified as a rodent cDNA termed CTLA8, IL-17 is capable of inducing the secretion of IL-6 and IL-8 and augmenting the expression of ICAM-1 in human fibroblast cultures. The IL-17 protein exhibits a striking degree of homology with the HSV13 protein which mimics its function. The IL-17 receptor is a type I transmembrane protein 864 amino acids in length, that is highly expressed in spleen and kidney.
Description: IL-17 binds to IL-17 receptors (IL-17 R), which share no homology with any known family of receptors. While the expression of IL-17 is restricted to activated T cells, IL-17 R mRNA exhibits a broad tissue distribution, and has been detected in virtually all cells and tissues tested. The amino acid sequence of human IL-17 R is 69% identical to mouse IL-17 R.
Description: Interleukin-17A Human Recombinant produced in E.Coli is a homodimeric, non-glycosylated polypeptide chain containing a total of 264 amino acids (2 chains of 132 aa) and having a molecular mass of 31kDa. ;The IL-17 is purified by proprietary chromatographic techniques.
Description: The originally described IL-17 protein, now known as IL-17A, is a homodimer of two 136 amino acid chains, secreted by activated T-cells that act on stromal cells to induce production of proinflammatory and hematopoietic bioactive molecules. Today, IL-17 represents a family of structurally-related cytokines that share a highly conserved C-terminal region but differ from one another in their N-terminal regions and in their distinct biological roles. The six known members of this family, IL-17A through IL-17F, are secreted as homodimers. IL-17A exhibits cross-species bioactivity between human and murine cells. Recombinant human IL-17A is a 31.3 kDa disulfide-linked homodimer of two 137 amino acid polypeptide chains.
Description: Human Interleukin-17A (IL-17A) is encoded by the IL17A gene located on the chromosome 6 and belongs to the IL-17 family that contains IL-17A, IL-17B, IL-17C, IL-17D, IL-17E and IL-17F. They have a similar protein structure, with four highly conserved cysteine residues critical to their 3-dimensional shape, but no sequence similarity to any other known cytokines. Interleukin 17 is a T cell-expressed pleiotropic cytokine that exhibits a high degree of homology to a protein encoded by the ORF13 gene of herpesvirus Saimiri. Mature IL-17 containing one potential N-linked glycosylation site. Both recombinant and natural IL-17 have been shown to exist as disulfide linked homodimers. At the amino acid level, IL-17 exhibits 63 % amino acid identity with mouse IL-17. High levels of human IL-17 were induced from primary peripheral blood CD4+ T cells upon stimulation and they can induce stromal cells to produce proinflammatory and hematopoietic cytokines.
Description: The IL-17 family is comprised of at least six proinflammatory cytokines that share a conserved cysteine-knot structure but diverge at the N-terminus. IL-17 family members are glycoproteins secreted as dimers that induce local cytokine production and recruit granulocytes to sites of inflammation. IL-17 is induced by IL-15 and IL-23, mainly in activated CD4+ T cells distinct from Th1 or Th2 cells. IL-17F is the most homologous to IL-17, but is induced only by IL-23 in activated monocytes. IL-17B binds the IL-17B receptor, but not the IL-17 receptor; it is most homologous with IL-17D, which is expressed by resting CD4+ T cells and CD19+ B cells. IL-17E is mainly produced by Th2 cells and recruits eosinophils to lung tissue. IL-17C has a very restricted expression pattern but has been detected in adult prostate and fetal kidney libraries.
Description: The IL-17 family is comprised of at least six proinflammatory cytokines that share a conserved cysteine-knot structure but diverge at the N-terminus. IL-17 family members are glycoproteins secreted as dimers that induce local cytokine production and recruit granulocytes to sites of inflammation. IL-17 is induced by IL-15 and IL-23, mainly in activated CD4+ T cells distinct from Th1 or Th2 cells. IL-17F is the most homologous to IL-17, but is induced only by IL-23 in activated monocytes. IL-17B binds the IL-17B receptor, but not the IL-17 receptor; it is most homologous with IL-17D, which is expressed by resting CD4+ T cells and CD19+ B cells. IL-17E is mainly produced by Th2 cells and recruits eosinophils to lung tissue. IL-17C has a very restricted expression pattern but has been detected in adult prostate and fetal kidney libraries.
Gentaur's IL-17 CLIA kit utilizes the Sandwich- CLIA principle. The micro CLIA plate provided in this kit has been pre-coated with an antibody specific to Human IL-17 . Standards or samples are added to the micro CLIA plate wells and combined with th
Gentaur's IL-17 ELISA kit utilizes the Sandwich-ELISA principle. The micro ELISA plate provided in this kit has been pre-coated with an antibody specific to Human IL-17. Standards or samples are added to the micro ELISA plate wells and combined with
Description: IL-17 Human Recombinant produced in HEK cells is a glycosylated homodimer, having a molecular weight range of 30-35kDa due to glycosylation.;The IL-17 is purified by proprietary chromatographic techniques.
The protein encoded by IL-17 gene is a proinflammatory cytokine produced by activated T cells. This cytokine regulates the activities of NF-kappaB and mitogen-activated protein kinases. This cytokine can stimulate the expression of IL6 and cyclooxyge
Description: Quantitative sandwich ELISA for measuring Human IL-17 in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids.
The protein encoded by IL-17 gene is a proinflammatory cytokine produced by activated T cells. This cytokine regulates the activities of NF-kappaB and mitogen-activated protein kinases. This cytokine can stimulate the expression of IL6 and cyclooxyge
Description: Quantitative sandwich ELISA for measuring Human IL-17 in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids.
The protein encoded by IL-17 gene is a proinflammatory cytokine produced by activated T cells. This cytokine regulates the activities of NF-kappaB and mitogen-activated protein kinases. This cytokine can stimulate the expression of IL6 and cyclooxyge
Description: Quantitative sandwich ELISA for measuring Human IL-17 in samples from cell culture supernatants, serum, whole blood, plasma and other biological fluids.